THE **SAFER SPEED** PROGRAMME

An update to the RCA Forum

29 November 2013

GPS Objectives

• Safety:

– Safer Journeys

Safer Speed

– Safe System

User behaviour

Roads and roadsides

• Efficiency:

- Economic productivity
- Travel time
 - Road hierarchy
 - Freight
 - Tourism
 - Regional / inter- regional

Speed Limit Rule Objectives

- balance mobility, travel efficiency and safety
- ensure speed limits are safe, appropriate and credible for the environment and level of road side development
- to be nationally consistent

Speed Limit Calculation\ From rating survey

Uses the following information:

- road side development
- number and nature of side roads
- roadway characteristics
- vehicle, cycle and pedestrian activity
- road function and adjacent land use

Further consideration:

Crash history, traffic speed, speed, survey, safety concerns, operational issues (eg schools)

Control Measures

Engineering

- Speed Limits
- Rural thresholds
- Safer roads and roadsides

Education

- road users, schools
- Advertising
- Electronic speed monitoring

Enforcement

- Speed camera
- Road policing

Reinforcing methods

- Change speed environment : Plantings , alignment
- Rural / Urban thresholds : Signs and markings
- Narrow lane markings, flush medians, striping
- Physical islands
- Education strategies
- Enforcement / travel speed information

Is this appropriate (70km/h)

Safer Roads and Roadsides

Optimal speeds

Optimal travel speeds support both safety and economic productivity

Optimal travel speeds find the "sweet spot" that meets the different economic, safety and social functions of different kinds of roads.

They take into account vehicle operating costs, travel time and travel time reliability, reduced death and serious injuries (**DSIs**), reduced social and economic cost of road crashes, as well as broader social and environmental goals.

We ask – what is the function of this type of road and what speed supports that function? Then ask – what features of the design (eg safety barriers present) or use on *this road* affect optimal speed.

Road classifications

An example: how the proposed one network classifications apply on the SH network

State Highways by One Network Classification

ONE NETWORK ROAD CLASSIFICATIONS

Rural 77% of length 50% of vkt 51 % of dsis	Daily traffic	% of rural length	% of rural vkt	Urban Daily traffic	% of urban network	% of urban vkt
High volume	>20000	0.5	21	>35000	2	25
National Strategic	>15000	1.6	13	>25000	1	6
Regional strategic	>10000	2	19	>15000	3	20
Arterial	>3000	2	12	>5000	7	26
Primary Collector	>1000	8	19	>3000	5	8
Secondary collector	>200	17	11	>1000	12	9
Access	<200			<1000		
Low volume access	<50	69	5	<200	69	6

Road function is designated by road classification...

Highest classification roads are few in length, carry the greatest relative volumes of traffic **(VKT)** and freight and are designed to the highest standards. designed to the highest standards.

Road geometry illustrated

- A local example Illustrating which roads are
- straight
- curved
- winding
- tortuous

OPTIMAL SPEEDS - REVISED – depending on star rating or road risk

	Straight		Winding/ tortuous	Urban	If high vulnerable user counts or intersection density	
High volume	100 or 110 0.2% length 9 % VKT 1 % of Dsis	80 or 100		50 60 or 80 if IRAP score	30 or 40 0.7 % of length	
National strategic				allows	6 % of dsis	
Regional strategic	80 or 100 18%of length 33 % vkt 35 % of dsis		60 or 80	50	30 or 40 2.4 % of length 23 % of .vkt	
Arterial					22 % of dsis	
Primary Collector				50	30 or 40	
Secondary collector			59% of		4 % of length 8 % of vkt 11% of dsis	
Access	60 or 80		8% of vkt 15% of dsis	30 or 40		
Low volume access					3 % of length 11 % of vkt 16% of dsis	

ACHIEVING OPTIMAL SPEEDS BY ROAD TYPE

Nat Strategic	Focus on efficiency as well as safety	
Regional strategic	Invest for safety and growth Over time speed management including speed limits support	
Arterial	optimal speeds without undermining safety	
Primary Collector	Complex environments.	
Secondary collector	There are particular safety issues on curved / winding rural roads Topography/ land use /intersection density/ use of the road influences limits most especially in urban areas.	
Access		
Low volume access	Speed based on broad set of values including access, and safety of vulnerable users - less focus on efficiency	

A national strategic winding/tortuous route – what they look like: SH1 Northland – Dome valley

Red = combined winding and tortuous.

This route is KiwiRAP 2 star. Optimal speed on this road would be 60 or 80 Current mean speed is <80 (eRUC data)

An arterial winding/tortuous route — Taihape road in the Hastings area

No star rating exists for this narrow (6.5-7 m) winding route but the red dots represent deaths, yellow dots are serious injuries

AADT 500 - 1000vpd 12-20% HCV (150 vpd)

Optimal speed on this road would be 60 for most sections Current mean speed is <70 (eRUC data) North Island current state applying the proposed optimal speeds for rural roads

Waikato rural case study applying the proposed optimal speeds for rural roads

Waikato rural eRUC speeds at night. These are an indicator of the speeds trucks will travel at when not constrained by other traffic. They also indicate where topography affects speeds.

Questions still to resolve

- We do not yet know actual mean light vehicle speeds on different types of roads
- There is more work to do on urban routes with RCAs who are experts on urban speeds
 - Road classification traffic volume criteria are not good indicators in many cases
 - Use may be more important
- What weight to place on intersection density and urban risk factors

