Estimating the Contribution of Road Runoff to Receiving Environments Close to State Highways

Craig Depree,^{*1} Jacquie Reed¹ & Carl Reller² ¹ National Institute of Water & Atmospheric Research ² New Zealand Transport Agency

1

Background:

- Land Transport Act (2003)
- requires:
- ...improved social and environmental responsibility in land transport funding, planning and management
- significant challenges for NZ Transport Agency \Rightarrow
- costing the effects of road runoff on aquatic ecosystems

NZ Transport Agency approach:

- NZ Transport Agency ⇒ 4 Stage assessment of adverse environmental effects
 - 1) identification of sensitive receiving environments (SRE's)
 - 2) assessment of contribution of road runoff to sediment contamination
 - 3) preparation of a stormwater treatment standard
 - 4) evaluation of overseas predicative assessment tools for usefulness in New Zealand (UK & US Highway Agency's)

NIWA study concerned primarily with (2)

The aims of the research project:

1) develop sampling sediment sampling strategy

2) determine whether there is a correlation between sediment contaminants & catchment VKT (proxy for 'load')

• important for the assessment of SRE's

(1) Identification of SRE's

- Land Transport NZ Research Report #315
 - Identifying Sensitive Receiving Environments at Risk from Road Runoff (Gardiner & Armstrong, MWH)
- SRE rating comprised of:
- sensitivity rating factor (SRf)
 - (1) type sensitivity; (2) ecological value; (3) human use value
- pathway factor (Pf)
 - types: direct; indirect; diffuse
- *source strength* (*S*) \Rightarrow mass units per day: e.g. mg zinc/day

'overall pollution risk' (R) = (SRf) x (Pf) x (S)

■ difficult to obtain accurate source strength data ...

use catchment <u>VKT as proxy for runoff quality</u> Tier 1 assessment

The aims of the research project:

1) develop sampling sediment sampling strategy

2) determine whether there is a correlation between sediment contaminants & catchment VKT (proxy for 'load')

• important for identifying SRE's

3) estimate the contribution of <u>road</u> runoff to sediment contaminant concentrations in receiving environments

Contribution of road runoff contaminants

Contribution of road runoff: cost/benefit

- prioritisation of stormwater treatment & level required
- apportioning cost/responsibility for any `impacts'

Methods:

- determine diagnostic ratios of contaminants in a representative road runoff sample
- contaminants of interest:
 - heavy metals:
 - zinc (Zn)
 - copper (Cu)
 - organic contaminants:
 - polycyclic aromatic hydrocarbons (PAHs) '16 priority US EPA'
 - total petroleum hydrocarbons (TPH)
- use ratios to estimate the proportion of sediment contaminants attributable to road runoff in potential SRE's (Auckland)
- ...requires a suitable road runoff 'standard' material
 - \blacksquare \Rightarrow although road runoff is made up of multiple sources...

Road runoff: a mixed contaminant source …not just transport-related sources road related non-transport sources need a 'reference' source material that optimises road-related inputs...

Grafton Gully stormwater treatment tank

- largest SWTD device in NZ (100x10x2.5 m)
- commissioned ca. 2003
- comprised of inlet, forebay and 85m settling tank
- in its absence:
 - coarse particulates would deposit in streams
 - finer particulates would settle in estuaries
- catchment dominated by high traffic volume roads

Auckland

Motions VKT = 478,806

catchments

Paremoremo VKT = 427,273

Newmarket VKT = 444,885

Onehunga VKT = 691,419

Puhinui VKT = 481,231

ANZECC HIGH = 410 mg/kg

3 sites + Grafton exceed ANZECC ISQG-High value for Zn background [Zn] significant @ Onehunga & Paremoremo

Heavy metals in sediments: copper

- 22 185 mg/kg
- Grafton sed. = 182 mg/kg
- ANZECC LOW = 65 mg/kg

3 sites + Grafton exceed ANZECC ISQG-High value for Zn background [Cu] significant @ Onehunga, Paremo. & Puhinui

PAHs in sediments

- 5 catchments classified into 2 groups:
 - 'HIGH' (>10 mg/kg): Motions & Newmarket
 - 'LOW' (<1 mg/kg): Onehunga, Paremoremo & Puhinui

ANZECC 'LOW' trigger value for PAHs = 4 mg/kg

Concentration: source vs. sediment

- runoff particulate source material diluted during transportation & deposition in receiving environment sediment
- Grafton SWTD ('source') = 7 mg/kg PAH

dilution

dilution

transportation/dilution by non-anthropogenic material (soil/plant)

- sediment ('sink') expect <<7 mg/kg PAH</p>
- \Rightarrow estimate dilution factors ([sink]/[source])
 - first 'look' to reconcile source/sink contaminants
- dilution depends on:
 - 'pathway' (ie. direct/indirect/diffuse)
 - representative 'source' strength (Grafton)

Dilution of contaminants

PAHs

- Motions & Newmarket sediment would require concentration of Grafton runoff!
- dilution factors of 20-50 for Onehunga, Paremoremo & Puhinui
- Heavy metals

- problem: background concentrations significant ⇒ uncertainty
- similar trend to PAHs; Puhinui very high Zn relative to Cu & PAH

Zinc : copper ratio (qualitative)

- main concept:
- If runoff particulates a major source, then Zn:Cu ratio in environmental sediments (sink) ≈ runoff particulates (source)
- if not ... \Rightarrow evidence of 'other' major source
- note: based on Grafton being 'representative' of road runoff particulates from traffic-dominated catchment (since focus is on transport-related inputs)

main points:

- Onehunga & Paremoremo consistent with road runoff being main source of Zn/Cu
- Puhinui has other significant
 Zn source (Zn:Cu = 20)
- Motions/Newmarket sediments have relative enrichment of Cu

Estimating PAH contribution (semi-guantitative)

refractory compounds in crude oil residue (bitumen) assume all sediment hopanes due to road runoff determine representative hopane: PAH ratio (Grafton) based on sediment hopane \Rightarrow calc. PAH from RDS

CONTRIBUTION = $[PAH]_{RDS calc} / [PAH]_{sed. total} \times 100$

Historic vs. present road runoff: Coal Tar Prior to 1960-70's many road used coal tar in construction

'Present'

bitumen

petrogenic source 20-30 µg/g PAHs

'Historic' coal tar

implications for road runoff PAH load:

Scenario: road runoff particulates contain **0.5%** binder

Estimating PAH contribution II

- sediments of concern:
- RDS contribution <u>LOW</u>
- <u>low</u> potential to improve via treatment?
- RDS contribution HIGH
- sediments of no concern
- Iow cost/benefit ratio

Summary Table

Catchment	Estimated contribution of RDS to sed. PAHs (%)	Sediment [PAH] relative to ANZECC 'LOW'	PAH sediment levels of concern
Motions	2-3	4.7	YES
Newmarket	3-5	2.9	YES
Onehunga	70-100	0.075	NO
Paremoremo	63-100	0.048	NO
Puhinui	100	0.033	NO

Summary

looking at original aims...

- 1) develop sampling sediment sampling strategy
 - current strategy didn't provide background concentrations
 - New sampling to use short cores (top =impacts; bottom = bkgd)
- 2) is there correlation between sediment contaminants & catchment VKT (proxy for 'load')
 - Can not be easily achieved unless catchments are either selected with similar (or are able to be normalised for differences in) ⇒
 - pathway type, source strength, dilution from non-anthropogenic sediment

Summary (cont.)

- 3) estimate the contribution of <u>road</u> runoff to sediment contaminant concentrations in receiving environments
 - Yes –estimated of inputs but only using PAH (at present)
 - Useful to be able to perform similar 'semi-quantitative' contribution estimates for heavy metals (currently only qualitative assessment)
 - Based on PAHs...
 - catchments with <u>high</u> sediment [PAH] \Rightarrow <u>low</u> road runoff contribution
 - Other source of PAHs is coal tar (via historic road runoff inputs)
 - Catchment where runoff <u>major source</u> \Rightarrow sediment [contaminant] low

