Impacts of dust from unsealed roads
Context – The Unsealed Environment

Unsealed Roads (km)

- Far North District Council: 641 km
- Wairoa District Council: 550 km
- Marlborough District Council: 853 km
- Hurunui District Council: 1,800 km

Percent of Roads that are Unsealed

- Far North District Council: 59%
- Wairoa District Council: 42%
- Marlborough District Council: 71%
- Hurunui District Council: 66%
Dust from Unsealed Roads?

- What are the RISKS?
- What are the options for MITIGATION?
- What is the BENEFIT/COST of mitigations?
Acknowledgements

- **NZTA:** Funding – Research project TAR14/31.
- **Project Steering Group:** Rob Hannaby (NZTA), Jon Cunliffe (Marlborough District Council), Frances Graham (Ministry for Health), Greg Haldane (NZTA) and Iain McGlinchy (Ministry of Transport).
- **Far North District Council:** for hosting the dust monitoring programme.
- **Transfield Services:** (Mike Grimshaw, Far North Branch) for applying the dust suppressant.
- **Air Quality Limited:** (Mark Bart and Paul Baynham) For commissioning and operation of the equipment and processing the monitoring data.
- **Dust Control Solutions:** (Anthony Stewart) for advice on dust suppressant type and for supplying the dust suppressant.
- **Equipment hosts:** Kaingahoa Marae (Jane Whiu), Tasha Whiu, Doug Boyd, Colin Pinkney for hosting the monitoring equipment on their Mataraua Road properties.
- **Northland Regional Council:** for assistance with clarifying the activity status of applying the dust suppressant.
An important note for the Audience

The views expressed in research reports are the outcomes of the independent research, and should not be regarded as being the opinion or responsibility of the NZ Transport Agency. The material contained in the reports should not be construed in any way as policy adopted by the NZ Transport Agency or indeed any agency of the NZ Government. The reports may, however, be used by NZ Government agencies as a reference in the development of policy.

While research reports are believed to be correct at the time of their preparation, the NZ Transport Agency and agents involved in their preparation and publication do not accept any liability for use of the research. People using the research, whether directly or indirectly, should apply and rely on their own skill and judgement. They should not rely on the contents of the research reports in isolation from other sources of advice and information. If necessary, they should seek appropriate legal or other expert advice.
Research objectives

1. **Describe and quantify the impacts of dust** exposure from unsealed roads
2. **Collect new data** to characterise the dust and quantify the impacts of dust
3. Investigate **dust mitigation measures**.
4. Estimate the **costs of the health impacts** and the **benefits of mitigating the dust**
5. Tools to **support decision making** about mitigation options.
Monitoring Site Selection: Phase 1

- Unsealed roads trafficked by reasonably high volumes of vehicles including a significant number of heavy duty vehicles.
- A Territorial Local Authority (TLA) that was prepared to act as a host by assisting with site selection, provision of traffic data, and providing support with the logistics of monitoring.
- Be within a region that allowed the application of dust suppressants on unsealed roads.
Monitoring Site Location: Phase 2

- **Number and type of vehicles** passing the site each day
- Number of **nearby dwellings**
- **Topography and meteorology** (maximum frequency of cross-road winds).
- **Cell phone coverage** (ability to telemeter the data from site).
- **Suitable locations to install equipment** on roadside (requires permission from private land owners).
- **Power supply available** for equipment (solar powered equipment more expensive to install and problematic to run).

- Potential sites in the Far North District
 - Ngapipito Road
 - Pipiwai Road
 - Mataraua Road
 - Piccadilly Road

December 2, 2015
Monitoring Site Location
Site geology, roadway construction and traffic

- Base geological material is **sedimentary rock**
- The **design and construction** is **typical of other unsealed roads** within the Northland Region.
- The **maintenance schedule** is **typical** of other unsealed roads in the FNDC.
- **Metal** used to cover the road bases in Northland **varies from road to road** with metals being supplied from close by sources.
- Logging **truck numbers** are **relatively high**

December 2, 2015
Monitoring equipment - Dust
Dust monitoring was not NES compliant

- NES compliant monitoring
 - BAM
- Campaign monitoring
 - Dust Mote
- Dust mote data is
 - NOT NES compliant
- Converted to BAM equivalent
- Good indicative data
- Fit for the purpose of this project

December 2, 2015
Monitoring site layout and equipment network

- Treated North - 80m
- Treated North - 30m
- Treated North - 5m
- Treated South - 5m

Mataraua Road

Coordinate System: NZGD 2000 New Zealand Transverse Mercator
Map Image: LINZ Land Eagle Technology
Limitation on results presented

- Results presented:
 - Have not fully completed the peer review process
 - Are subject to change
- Results will be finalised when the NZTA report is published.
Meteorology of the site

Wind Speed (m/s)

Hour of Day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1st Quartile to Median Median to 3rd Quartile Mean
Vehicle movements

![Graph showing vehicle movements by hour of day, categorized into light duty, heavy duty, and unclassified vehicles.]
Total suspended particulates and PM$_{10}$
Total suspended particulates and PM$_{10}$

DRAFT RESULT - 30 m

- TSP
- PM10

32%
68%
Untreated section of road
PM$_{10}$ concentrations - untreated

DRAFT RESULT

24-hour average PM$_{10}$ conc. (µg/m3) vs. Day / Month

- Untreated North 5m
- Untreated North 30m

December 2, 2015
PM$_{10}$ concentrations - untreated

Table 4-1: Summary statistics for daily average PM$_{10}$ monitoring – untreated section of the road

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of days with data</th>
<th>Number of days with PM$_{10}$ concs. $>$50 μgm^{-3}</th>
<th>Campaign average PM$_{10}$ conc. (μgm^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated north - 5 m</td>
<td>52</td>
<td>25</td>
<td>83</td>
</tr>
<tr>
<td>Untreated north - 30 m</td>
<td>52</td>
<td>15</td>
<td>47</td>
</tr>
<tr>
<td>Untreated south - 5 m</td>
<td>45</td>
<td>19</td>
<td>101</td>
</tr>
</tbody>
</table>

- Non-NES compliant monitoring method
 - Results indicative rather than definitive
- PM$_{10}$ NES exceeded **one day in two** on the non-treated section of the road at the roadside
- PM$_{10}$ NES exceeded on **one day in three** the non-treated section of the road at **typical exposure locations**
Treated section of road
PM$_{10}$ NES Concentrations - treated

DRAFT RESULT

24-hour average PM$_{10}$ conc. (µg/m3)

Day / Month

Treated North 5m Treated North 30m

December 2, 2015
PM\textsubscript{10} concentrations - treated

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of days with data</th>
<th>Number of days with PM\textsubscript{10} concs. >50 μgm2</th>
<th>Campaign average PM\textsubscript{10} conc. (μgm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated north - 5 m</td>
<td>47</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Treated north - 30 m</td>
<td>55</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Treated south - 5 m</td>
<td>47</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

- Non-NES compliant monitoring method
 - Results indicative rather than definitive
- **PM\textsubscript{10} NES were exceeded at the roadside** of the treated section of the road infrequently, **one day in 15**
- **PM\textsubscript{10} NES is not exceeded on the non-treated** section of the road at typical exposure locations
Extent of dust plume impact – Background

PM$_{10}$

DRAFT RESULT

1-hour PM$_{10}$ conc. (µg/m3)

- **30m**
 - Mean: 11.1
 - 1st Quartile to Median: 7.6
 - Median to 3rd Quartile: 6.9

- **80m**
 - Mean: 10.9
 - 1st Quartile to Median: 6.9
 - Median to 3rd Quartile: 6.9

Note: Top error bars represent 90th percentile values. Bottom error bars represent minimum values.

Treated North sites (distance from road)

December 2, 2015
Extent of dust plume impact - Untreated

DRAFT RESULT

Note: Top error bars represent 90th percentile values. Bottom error bars represent minimum values.
Extent of dust plume impact - treated

DRAFT RESULT

1-hour PM$_{10}$ conc. (µg/m3)

Untreated North sites (distance from road)

0 50 100 150 200 250 300 350

5m 27.4 20.6
30m 14.1 10.6
80m 14.2 10.2

Note: Top error bars represent 90th percentile values. Bottom error bars represent minimum values.
Vehicle speed as a dust mitigation measure

<table>
<thead>
<tr>
<th>Vehicle Speed categories (km/hr)</th>
<th>Percentage of Vehicles in each category</th>
<th>Percentage of Vehicles in each category</th>
<th>Percentage increase (+) or decrease (-) in last 2 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average first 6 weeks</td>
<td>Average last 2 weeks</td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>16.9%</td>
<td>17.2%</td>
<td>0.37%</td>
</tr>
<tr>
<td>31-40</td>
<td>15.6%</td>
<td>15.0%</td>
<td>-0.60%</td>
</tr>
<tr>
<td>41-50</td>
<td>29.9%</td>
<td>28.4%</td>
<td>-1.44%</td>
</tr>
<tr>
<td>51-60</td>
<td>26.4%</td>
<td>26.9%</td>
<td>0.49%</td>
</tr>
<tr>
<td>61-65</td>
<td>5.7%</td>
<td>6.9%</td>
<td>1.15%</td>
</tr>
</tbody>
</table>
Dust deposition

- Deposited dust adjacent to the untreated section of the road was much higher than the MfE trigger level of 4 g/m²/30 days.

- A large variation was observed in the two results from the untreated section of the road (12 to 48 g/m²/month).

- The deposited dust adjacent to the treated section of the road was no greater than background levels and consistent over both measurement periods.
Respirable silica

- Potentially hazardous components of road dust
- Sampling undertaken at untreated, north 5 m site
- Simple pump and filter set up

- Mass of respirable silica were below the detection limit
- Preliminary conclusion - residents of Mataraua Road are unlikely to be exposed to annual average concentrations of greater than 5 $\mu g/m^3$.
- To confirm this conclusion, a more detailed monitoring programme of longer duration would be required.
Dust mitigation 1: Effectiveness of dust mitigation

DRAFT RESULT

Note: Top error bars represent 90th percentile values. Bottom error bars represent minimum values.
No sign of reduced effectiveness of suppressant over the life of the monitoring programme.

- Qualitative assessment (multivariate statistics could be employed)
Method to Assess health impacts of changes in PM$_{10}$ concentrations

- Assess annual PM$_{10}$ exposure (Mataraua Road data)
 - Untreated road (Baseline)
 - Treated road
 - Sealed road

- Calculate the health cost of dust exposure (HAPINZ)
 - Untreated road (Baseline)
 - Treated road
 - Sealed road

- Calculate the health benefits of mitigation
 - Baseline cost - Treated road cost
 - Baseline cost - Sealed Road cost
Calculating the costs of mitigation

- Baseline (untreated an unsealed road)
 - Maintenance (grading and metal)
- Treated road
 - Chemical suppressant
 - Maintenance (grading and metal)
- Sealed road
 - Sealing
 - Maintenance
Benefit to cost to ratio of dust mitigation

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Annual average PM$_{10}$ conc. (µg/m3)</th>
<th>Total annual health cost of PM$_{10}$</th>
<th>Annual health benefit of PM$_{10}$ mitigation</th>
<th>Annual cost of mitigation</th>
<th>Annual benefit to cost to ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road treated with chemical suppressant</td>
<td></td>
<td></td>
<td></td>
<td>TBC</td>
<td></td>
</tr>
<tr>
<td>Sealed road surface (40 year life)</td>
<td></td>
<td></td>
<td></td>
<td>TBC</td>
<td></td>
</tr>
<tr>
<td>Sealed road surface (10 year life)</td>
<td></td>
<td></td>
<td></td>
<td>TBC</td>
<td></td>
</tr>
</tbody>
</table>
Dust mitigation - decision making process

Figure 7-1 Dust mitigation – decision making process

Is there a need to mitigate road dust?

Calculate a site dust risk score.

Medium risk. There may be some benefit from mitigation. Return to and repeat Decision Matrix 1 with refined site specific information.

High risk. There is likely to be a benefit from mitigation. Complete assessment of suitable mitigation options.

Low Risk. Little or no benefit from mitigation. End of decision making process.

Assess which mitigation options are suitable?

Assess cost/benefit of available mitigation options

Dust Risk assessment matrix
<table>
<thead>
<tr>
<th>Risk Factor/Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Waikakaho Valley</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 day AADT of HDVs</td>
<td>Less than 5</td>
<td>05-Oct</td>
<td>Oct-25</td>
<td>25-50</td>
<td>More than 50</td>
<td>60</td>
</tr>
<tr>
<td>Longevity of logging route use</td>
<td>Not a logging route</td>
<td>1 year or less</td>
<td>2 years or less</td>
<td>3 years or less</td>
<td>Longer than 3 years</td>
<td>1</td>
</tr>
<tr>
<td>Speed of HDVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 km/hr limit</td>
</tr>
<tr>
<td>Number of dwellings within 80 m of roadway (houses/km)</td>
<td>none</td>
<td>1</td>
<td>02-Apr</td>
<td>05-Aug</td>
<td>More than 8</td>
<td>15</td>
</tr>
<tr>
<td>AADT of LDVs</td>
<td>Less than 50</td>
<td>50-100</td>
<td>100-200</td>
<td>200-400</td>
<td>More than 400</td>
<td>60</td>
</tr>
<tr>
<td>Speed of LDVs</td>
<td>Less than 50 km/hr</td>
<td>50-70 km/hr</td>
<td>Greater than 70 km/hr</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Location of roadway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Open plains or costal area</td>
</tr>
<tr>
<td>Frequency of rain days (>5 mm)</td>
<td>More than 3 per week</td>
<td>More than 2 per week</td>
<td>Less than 1 per week</td>
<td>Less than once per week</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Other locations where people are likely to be exposed. (e.g. schools, marae, or hospitals)</td>
<td>None</td>
<td>1 location</td>
<td>2 locations</td>
<td>3 or more locations</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ecologically sensitive areas such as rare species habitats or wetlands</td>
<td>None</td>
<td>1 sensitive areas</td>
<td>2 sensitive areas</td>
<td>3 or more sensitive areas</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nuisance effects for residents</td>
<td>No</td>
<td>1 – 2 complaints total</td>
<td>More than 2 complaints per year</td>
<td>More than 6 complaints per year</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Horticultural sensitive areas such as fruit orchards</td>
<td>No</td>
<td>1 sensitive areas</td>
<td>2 sensitive areas</td>
<td>3 or more sensitive areas</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
Waikakaho Valley Example - Result

Matrix Score of 26 -> High Risk from Dust

=> Benefit likely from mitigations. Assess suitable options
Recent Dust Mitigations in the Waikakaho

- 2014 - carried out prior to this research project
- 2.5 km of road treated
- In response to public concerns
- First water: – 90 days @$1000/day; $36,000 per km
- Then Otta Seal: (2.5km) @ $270,000; $68,000 per km
- [Suppressant at Mataraua Road: (MgCl2): $20,000 per km (pa)]
Recommendations for future investigations

- **Enhancing future monitoring programmes**
 - Time of year
 - Greater use of BAMs to validate dust mote data
 - Effect of speed
 - Other sites
 - Road type
 - Road Construction
 - Vehicle fleet and numbers
 - Meteorology
 - Respirable particulate

- **Additional data analyses**
 - Refine plume extent
 - Investigate the effect of vehicle type (HDV vs LDV), on dust concentrations
 - Investigate the effect of meteorology (high and low wind speeds) on dust concentrations
 - Effect of rainfall on dust concentrations
 - Dust emission factors
 - Dust exposure model
 - Analysis of video
Where to from here?

- Complete the peer review process (end of November)
- Workshops
 - NZ Transport Agency / NZIHT Conference (Paihia 2 Nov)
 - Far North District Stakeholders (Kaikohe 4 Nov)
- Finalise report (before Christmas)
- NZTA publish report – new year
Questions?

It's QUESTION TIME!!